From ATR-100 manual, vol 2

4020424-01	FLUX LOOP EQUALIZING AMPLIFIER ASSEMBLY
	NEXT HIGHER ASSEMBLY 4010294,4010295,
	4010296,4010297

$\begin{array}{\|c\|} \hline \text { IEM } \\ N O \end{array}$	PARt Number	DESCRIPTION	$\begin{aligned} & \text { REF } \\ & \text { DESIO } \end{aligned}$	QIY REQD PER DASH NUMBER									
				-01									
1													
2													
3													
4													
5	4030416-01	CHASSIS ASSY		1									
6	4110147-23	NAME PLATE		1									
7	4290962-01	COVER		1									
8	6000006-10	WNOB, SKIRTED 5/8"MED. DK. GY		2									
9													
10													
11													
12													
13	070-996	FUSE, SLOW BLON 0.1A, 125V	F1	1									
14	084-032	CORD, POWER, 6 FT		1									
15	085-001	HOLDER, FUSE		1									
16	120-746	SWITCH, DPDT	55	1									
17	167-369	CONNECTOR PART, COATINCT, (6 REQUIRED)		AR									
18	167-404	CORECTIOR PART, BODY, 2 PASITICA P2,3		2									
19	167-442	CONNECTOR PART, BCDY, 3 POSITTCON Pl		1									
20													
21	172-009	SOLDER LUG, 10		4									
22	172-004	SOLDER LUG, 44		1									
23	187-003	PAST, BLNOI: ${ }^{\text {ch, }}$ BLACK		1									
24	187-004	PAST, BINDING, RED		3									
25	250-192	FOOT, . $300 \mathrm{H.X} .812 \mathrm{~W}$.		4									
26	265-075	BUSHCXG, STRAIN PFLIEF		1									
27													
28	302-335	TIE-STRAP , ${ }^{\prime \prime}$		2									
29	473-324	SCREV, SEM, 4-40 X . 250		4									
30	476-998	SCPRY, HEX : AD , SELF TAPPING , $\# 6 \times .250$		4									
31													
32	492-457	NUT, 3/8-32		1									
33	501-008	WASHER, FINT : 4		2									
- 34													
35		טTRE, PVC, 22 A A:G		AR									
36		SLEEVING, SHRINK, ELK	REF:S5, FI	^R									

Assembly No. 4050859. Flux Loop Equalizing Amplifier PWA

completely on the takeup reel and then place the recorder/reproducer in the rewind spool mode to wind the tape back on its original reel. Note that after extensive use, high frequency tones on the alignment tape may drop as much as 2 dB , particularly at the slower tape speeds.

Operating level and reproduce frequency response can be checked with a standard alignment tape (Table 5-1). When using a standard alignment tape that is recorded the full width of the tape to check a system with heads less than full width, the response readings below approximately 10.0 kHz become progressively invalid as the frequency decreases. This is caused by the low-frequency fringing effect of the reproduce head. The reproduce head picks up additional flux beyond the track width of the head as the frequency decreases. This error, being wavelength dependent, becomes worse as the wavelength increases.

Therefore, if the equalization is correctly adjusted, the reproduce response when using a full-track alignment tape on either a 2-track, 1/4-inch tape system or a 4 -track, $1 / 2$-inch tape system should conform to the relative curves shown in Figure $5-11$ within the tolerances given in Table 5-3. The curves given in Figure 5-11 display the relative fringing frequency response and do not include the fixed error due to the wider reproduce core width (as compared to the record head width).

Table 5-4 provides the amplitude correction factors to be used when setting operating level using a fulltrack alignment tape on a 2 -track, $1 / 4$-inch tape system or a 4 -track, $1 / 2$-inch tape system.

The correction factors in Table 5-4 are the amounts by which the actual measured reproduce output from a full width alignment tape will exceed the reproduce output of the correct track width recorded to the same fluxivity. The table includes the fixed error due to the wider reproduce core width and the relative fringing error (shown in Figure $5-11$) for frequencies of $500 \mathrm{~Hz}, 700 \mathrm{~Hz}$, and 1.0 kHz . For example, when reproducing the $700-\mathrm{Hz}, 185 \mathrm{nWb} / \mathrm{m}$ tone on an Ampex $15 \mathrm{in} / \mathrm{s}$ full-width alignment tape on a 2 -track, $1 / 4$-inch tape system, the output (as read on an ac voltmeter) will be +1.14 dB higher (Table 5-4) as compared to reproducing and alignment tape that
has the same track format as the recorder/ reproducer.

The amplitude correction factor of 1.14 dB was obtained by adding the following figures:
0.56 dB - compensation for wide reproduce core width (see asterisk, Table 5-4).
0.58 dB - relative fringing frequency response due to fringing error effect at 700 Hz and $15 \mathrm{in} / \mathrm{s}$ (Figure 5-11).
1.14 dB - amplitude correction factor.

Note that if the alignment tape used matches the head track format, the correction factors given in Table 5-4 are not used. Also no corrections are required when using a full-width alignment tape to align a full-track head assembly system.

Another source of error is the reproduce head pole contour effect. This effect is prevelent when using the low-frequency sections of the alignment tape. If the alignment tape track format matches the reproduce head format, the error is not severe. This type of error can be minimized by adjustment of the low frequency reproduce equalizers while performing the overall record/reproduce alignment procedure.

5-37. Using a Flux Loop - General Discussion. An accurate method of setting equalization involves the use of a flux loop driven by an audio oscillator in order to induce an electromagnetic field into the reproduce head. The field produced by the flux loop may be equalized to simulate the short circuit flux/frequency response from an ideally recorded alignment tape. The response of a correctly equalized reproduce system to a correctly equalized flux loop will be an almost constant output with frequency over the audio range of interest. However, the use of the flux loop will not disclose the following errors:

- Reproduce head low frequency pole contour and secondary gap effect.
- Reproduce head high frequency gap loss.

Figure 5-11. Relative Fringing Frequency Response Due to Fringing Effect

Table 5-3. Reproduce Frequency Response Tolerances

SPEED	TOLERANCE $\mathbf{\pm 0 . 5 \mathrm { dB }}$	TOLERANCE $\mathbf{\pm 1 . 5 \mathrm { dB }}$	SEL SYNC $\mathbf{\pm 2 . 0 \mathrm { dB }}$
$30 \mathrm{in} / \mathrm{s}$	$250 \mathrm{~Hz}-20 \mathrm{kHz}$	$35 \mathrm{~Hz}-250 \mathrm{~Hz}$ $20 \mathrm{kHz}-28 \mathrm{kHz}$	$50 \mathrm{~Hz}-15 \mathrm{kHz}$
$15 \mathrm{in} / \mathrm{s}$	$125 \mathrm{~Hz}-15 \mathrm{kHz}$	$20 \mathrm{~Hz}-125 \mathrm{~Hz}$ $15 \mathrm{kHz}-20 \mathrm{kHz}$	$40 \mathrm{~Hz}-12 \mathrm{kHz}$
$7.5 \mathrm{in} / \mathrm{s}$	$125 \mathrm{~Hz}-10 \mathrm{kHz}$	$30 \mathrm{~Hz}-125 \mathrm{~Hz}$ $10 \mathrm{kHz}-15 \mathrm{kHz}$	
$3.75 \mathrm{in} / \mathrm{s}$	$125 \mathrm{~Hz}-5 \mathrm{kHz}$	$30 \mathrm{~Hz}-125 \mathrm{~Hz}$ $5 \mathrm{kHz}-10 \mathrm{kHz}$	-

NOTE: To the above tolerances, add manufacturing tolerances Of the alignment tape and relative fringing frequency response due to fringing effect (Figure 5-8).

Table 5-4. Amplitude Correction Factors for Setting Operating Level when using Full-Track Alignment Tapes on 2-Track or 4-Track Systems

SPEED	REFERENCE FREQUENCY	CORRECTION FACTOR*	
		2 TRACK	4 TRACK
$30 \mathrm{in} / \mathrm{s}$	500 Hz	+ 1.61 dB	+2.10 dB
	700 Hz	+1.46dB	+1.85 dB
	1.0 kHz	$+1.29 \mathrm{~dB}$	+1.58 dB
$15 \mathrm{in} / \mathrm{s}$	500 Hz	+1.29 dB	$+1.58 \mathrm{~dB}$
	700 Hz	+1.14 dB	+1.34 dB
	1.0 kHz	+1.01 dB	+1.13 dB
$7.5 \mathrm{in} / \mathrm{s}$	500 Hz	$+1.01 \mathrm{~dB}$	$+1.13 \mathrm{~dB}$
	700 Hz	+0.90 dB	+0.99 dB
	1.0 kHz	+0.81 dB	+0.87 dB
3.75 in/s	500 Hz	$+0.81 \mathrm{~dB}$	$+0.87 \mathrm{~dB}$
	700 Hz	+0.74 dB	+0.79 dB
	1.0 kHz	+0.69 dB	+0.74 dB

*The amplitude correction factors shown in the table are the sum of the values shown in Figures $5-11$ for the frequencies shown in the table, and the fixed errors due to wider reproduce core width as follows:

2 track -0.56 dB due to 80 -mil reproduce core on 75 -mil track
4 track - 0.6 dB due to 75 -mil reproduce core on 70 -mil track

- Effects due to head-to-tape contact or azimuth errors.

The ATR-100 incorporates automatically selected preset equalization to correct for secondary gap rise at 15 and $30 \mathrm{in} / \mathrm{s}$. Therefore, at 15 and $30 \mathrm{in} / \mathrm{s}$, with the reproduce low-frequency and high frequency equalizer controls correctly set, the actual flux-looped low-frequency response will depart from a flat response by a specific amount depending on frequency. Figure $5-12$ shows the correct response that should be obtained at 15 and $30 \mathrm{in} / \mathrm{s}$ with the reproduce equalizers adjusted to match the equalization standard set on the equalized flux loop. The output frequency response using a correctly equalized flux loop should be flat for 3.75 and $7.5 \mathrm{in} / \mathrm{s}$.

A recommended flux loop for use with the ATR100 is the Ampex flux loop (Ampex Part No. 4020423) used with an Ampex flux loop equalizing amplifier (Ampex Part No. 4040424). This equalizing amplifier contains inverse compensation for the secondary gap rise for the setting of equalization at 15 and $30 \mathrm{in} / \mathrm{s}$. Therefore, Figure 5-12 does not apply when using the Ampex equalizing amplifier.

When an equalizing amplifier is not used, the flux loop may be passively equalized by use of a capacitor connected across the oscillator terminals, to provide the high-frequency transition. Table 5-5 provides capacitor values for specified equalization standards when using an audio oscillator with 600 ohms output and an Ampex flux loop that has a de
resistance of 100 ohms. If a flux loop or audio oscillator with other characteristics is used, a nominal capacitor value may be calculated by the following formula:

Where:

$$
\begin{gathered}
\mathrm{T}=\begin{array}{c}
\text { equalization transition time constant } \\
\text { (seconds) (Table 5-5) }
\end{array} \\
\mathrm{RQ}=\text { oscillator output resistance (ohms) } \\
\mathrm{R}-\mathrm{]}=\text { flux loop de resistance (ohms) } \\
\mathrm{C}=\text { capacity in } \mu \mathrm{F}
\end{gathered}
$$

Figure $5-13$ shows the desired system response from an unequalized flux loop, with constant current drive, for the most common equalization standards.

5-38. Head Azimuth and Phase - General Discussion. The only head adjustment required is for record and reproduce head stack azimuth. Precision mounting of the record and reproduce head stack has eliminated the need for adjusting tape wrap, height, and zenith. The azimuth adjustment is made by turning a hex socket screw accessible through the top of the head shield (Figure 5-14)

Figure 5-12. Equalized Flux Loop Response for $15 \mathrm{in} / \mathrm{s}$ and $30 \mathrm{in} / \mathrm{s}$

Table 5-5. Capacitor Values for Passive Equalization of High Frequency Turnover

TAPE SPEED AND EQUALIZATION STANDARD	HIGH FREQUENCY TRANSITION TIME CONSTANT	-3dBFREQUENCY	CAPACITOR VALUE*
$30 \mathrm{in} / \mathrm{s}$ AES $15 \mathrm{in} / \mathrm{s}$ IEC/CCIR 7.5/15 in/s NAB $7.5 \mathrm{in} / \mathrm{s}$ IEC/CCIR $3.75 \mathrm{in} / \mathrm{s}$	17.5 MS 35 jus 50 Ms 70 Ms 90 ms	$\begin{gathered} 9,095 \mathrm{~Hz} \\ 4,547 \mathrm{~Hz} \\ 3,183 \mathrm{~Hz} \\ 2,274 \mathrm{~Hz} \\ 1,768 \mathrm{~Hz} \end{gathered}$	
*Capacitor value when using audio oscillator with 600-ohm output impedance and Ampex flux loop, part number 4020423-01 <Rloop = 100 ohms).			

which causes a tapered gear to rotate underneath the head-stack precision plate. The azimuth adjustment is adjustable over a range of ± 15 minutes of arc.

The adjustment of head phase can be considered a fine adjustment of head azimuth and is adjusted to eliminate phase error between tracks of a 2-track or 4 -track head assembly. Prior to the adjustment of head phase, the following criteria should be met:

1. Reproduce head - Reproduce equalization is correct.
2. Record head - Reproduce equalization and reproduce head azimuth have been adjusted. Record equalization and bias have been set for overall system high-frequency response and azimuth adjusted for maximum shortwave output.

Failure to observe the above criteria can result in incorrect mechanical azimuth being set in order to compensate for inter-track phasing errors. These errors are electrical in origin (differences between tracks in reproduce equalization, record equalization and/or record bias).

5-39. Operating Level - General Discussion. The operating level used is a matter of individual preference by the user of the recorder/reproducer. However, the use of Ampex 456 tape (or direct
equivalent) with an operating level of $370 \mathrm{nWb} / \mathrm{m}$ is recommended. This level will provide the lowest distortion and adequate headroom prior to tape saturation. Use of Ampex 456 tape with a lower operating level will degrade signal-to-noise ratio but will lower distortion and increase headroom.

With other types of tape, other operating levels may be preferable. For example, when using Ampex 406/407 tape, an operating level of not more than $260 \mathrm{nWb} / \mathrm{m}$ is recommended.

Operating level is set while reproducing a standard alignment tape of known short circuit fluxivity, and adjusting the recorder/reproducer reproduce gain appropriately. In the case of the Ampex alignment tape, reference levels of $700 \mathrm{~Hz}(500 \mathrm{~Hz}$ at $3.75 \mathrm{in} / \mathrm{s}$) at $185 \mathrm{nWb} / \mathrm{m}$ are used. (Other manufacturers of alignment tape have standard reference levels at $200 \mathrm{nWb} / \mathrm{m}$ or $250 \mathrm{nWb} / \mathrm{m}$ at 1.0 kHz , or $320 \mathrm{nWB} / \mathrm{m}$ at 1.0 kHz .) Table $5-6$ shows the relative differences in level between Ampex reference level ($185 \mathrm{nWb} / \mathrm{m}$) and other reference levels in domestic and international use.

If a full width alignment tape is used to set reproduce gain on a 2 or 4 -track system, errors in absolute reproduce sensitivity to recorded fluxivity will result due to the fringing effect. This error becomes more pronounced at the higher tape speeds. Table 5-4 lists the correction factors to be applied when using a full-width alignment tape for setting reference level when using a 2 -track or 4 track reproduce head assembly.

5-26 Using a Flux Loop

An accurate method of setting equalization involves the use of a flux loop driven by an audio oscillator in order to induce magnetic field in the reproduce head. The field produced by the flux loop may be equalized to simulate the short circuit flux/frequency response from an ideally recorded alignment tape. The response of a correctly equalized reproduce system to a correctly equalized flux loop is an alinost constant output with frequency over the audio range of interest. However, the use of a flux loop does not disclose the following errors:

- Reproduce head low-frequency pole contour and secondary gap effect.
- Reproduce head high-frequency gap loss.
- Effect due to head-to-tape contact, azimuth, or head racking errors.

The ATR-116/124 incorporates automatically selected preset equalization to correct for secondary gap rise at $7.5,15$, and $30 \mathrm{in} / \mathrm{s}$. Therefore, at $7.5,15$, and $30 \mathrm{in} / \mathrm{s}$, with the reproduce low-frequency and high-frequency equalizer controls correctly set, the actual flux-looped low-frequency response departs from a flat response by a specific amount depending on frequency. Figure 5-16 shows the correct response that should be obtained at $7.5,15$ and $30 \mathrm{in} / \mathrm{s}$ with the reproduce equalizers adjusted to match the equalization standard set on the equalized flux loop.

A recommended flux loop for use with the ATR-116/124 is the Ampex flux loop (Ampex Part No. 4020484) used with an Ampex flux-loop equalizing amplifier (Ampex Part No. 4040424). When an equalizing amplifier is not used, the flux loop may be passively equalized by use of a capacitor connected across the oscillator terminals to provide the high-frequency transition. The nominal capacitor value may be calculated by the following formula:

Where:

$$
C=\frac{T\left(R_{0}+R_{1}\right)}{R_{0} \cdot R_{1}}
$$

T =equalization transition time constant (seconds) (Table 5-3)
$\mathrm{R}_{0}=$ oscillator output resistance (ohms)
$\mathrm{R}_{1}=$ flux loop dc resistance (ohms)
C =capacitance (microfarads)
Figure 5-17 shows the desired system response from an unequalized flux loop for the inost common equalization standards. This assumes constant current through the flux loop when driven from a constant voltage source with an output resistance equal to or greater than zero ohms.

5-27 Head Azimuth Phase

Head adjustment is required for record and reproduce head stack azimuth. Precision mounting of the record and reproduce head stack has eliminated the need for adjusting height and zenith. The azimuth adjustment is made by turning a hex screw (Figure 5-18) which causes a tapered gear to rotate underneath the headstack precision plate. The azimuth adjustment is adjustable over a range of ± 10 minutes of arc.

ATR-116/124

Figure 5-16. Equalized Flux Loop Response

ATR-116/124

Figure 5-17. Reproduce Response From Unequalized Flux Loop

```
Goran Finnberg mastering@telia.com <mastering@telia.com>
>I couldn't find any explanation of how to set the trimpots on the
>equalizing amp schematic, at least not in the manuals that I looked
>in.
    \muS 17.5e-6
R35 = ---- = ---------- = 35 kohm = 35k - 30k = 5 kohm.
    C 500e-12
R35 = 5 kohm
R36 = 5 kohm
R37 = 3.3333 kohm
R38 = 5 kohm
R39 = 3.3333 kohm
R40 = 6.3636 kohm
As the Cs are all rated at 5\% tolerance then all the above trimpot values can only be
seen as nominal values since they have all been computed with all the Cs being spot on.
So all the trimpots MUST be adjusted using an accurate frequency counter + a very accurate output
level oscillator, flat +-0.05 dB up to 20 kHz , as follows:
1
R35 \(=17.5 \mu \mathrm{~S}=--------=9.09457 \mathrm{kHz} /-3 \mathrm{~dB}\) down
2p17.5e-6
R35 = 17.5 S S adjusted for -3 dB down at 9.09457 kHz at the output of any
of the RED output binding posts \(=P 2\) on the schematic.
R36 \(=35 \mu \mathrm{~S} \quad-3 \mathrm{~dB}\) down at 4.54728 kHz
R37 \(=50 \mu \mathrm{~S} \quad-3 \mathrm{~dB}\) down at 3.18310 kHz
R38 \(=70 \mu \mathrm{~S} \quad-3 \mathrm{~dB}\) down at 2.27364 kHz
R39 \(=90 \mu \mathrm{~S} \quad-3 \mathrm{~dB}\) down at 1.76839 kHz
\(R 40=120 \mu \mathrm{~S} \quad-3 \mathrm{~dB}\) down at 1.32629 kHz
------------
Best regards,
Goran Finnberg
The Mastering Room AB
Goteborg
Sweden
E-mail: mastering@telia.com
Learn from the mistakes of others, you can never live long enough to make them all yourself. - John Luther
```

